Festkörperelektronik

Vorlesung 4

Prof. Nils Weimann

IW / Bauelemente der Höchstfrequenzelektronik (BHE)

08.05.2025

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Zusammenfassung der letzten Vorlesung

- ► Anwendungen der Schrödingergleichung für ideale 1-Partikel Systeme
 - ▶ Potentialstufe unendlich ausgedehnt und endlich
 - Quantentopf
 - endliche Eindringtiefe in Potentialwand
 - lacktriangle Transmissionswahrscheinlichkeit 0 < T < 1

Ziele der 4. Vorlesung

- endlicher Potentialtopf
- ► Wasserstoff-Atommodell
- Periodensystem

/www.uni-due.de/bhe

Festkörperelektronik - N. Weimann © 2025

endliche Potentialstufe

- lacktriangle Wellenfunktion an der Potentialstufe für $W < V_0$
- ightharpoonup endlicher Transmissionskoeffizient 0 < T < 1

www.uni-due.de/bhe/

Festkörperelektronik - N. Weimann © 2025

www.uni-due.de/bhe/

endliche Potentialstufe

- Wellenfunktion an der Potentialstufe für $W > V_0$
- ▶ geringere kinetische Energie über der Potentialstufe
- Reflektionskoeffizient R > 0

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Tunneleffekt

- endliche Aufenthaltswahrscheinlichkeit in der Barriere, exponentiell abklingende Amplitude der Wellenfunktion
- lacktriangle auch für $W < V_0$ kann ein Teil der einfallenden Elektronen durch die Barriere tunneln: reduzierte Amplitude auf der rechten Seite
- ► Energieerhaltung: Wellenlänge bleibt gleich

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Potentialtopf

 $lackbox{ gequantelte Energie } W_n = rac{h^2}{8ma^2} \cdot n^2 \ {
m für } \ n=1,2,3,\ldots$

Potentialtopf

erlaubte Energiewerte im Potentialtopf

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

www.uni-due.de/bhe/

endlicher Potentialtopf

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Wellenfunktion im endlichen Potentialtopf

Potentialtopf mit endlich hohen Wänden

- ► Teilchen befindet sich in Region II
- lacktriangle vorgegebenes Potential $V_I=V_{III}=V_0$ und $V_{II}=0$
- lacktriangle gebundene Lösungen für $W < V_0$, $\Psi \to 0$ für $|x| \to \infty$

Festkörperelektronik - N. Weimann © 2025

endlicher Potentialtopf

- ► Teilchen befindet sich in Region II
- lacktriangle vorgegebenes Potential $V_I=V_{III}=V_0$ und $V_{II}=0$
- ightharpoonup gebundene Lösungen für $W < V_0$

www.uni-due.de/bhe/

Festkörperelektronik - N. Weimann © 2025

Wellenfunktion im endlichen Potentialtopf

lacktriangle exponentiell abklingende Amplitude in I und III, $k'' \in \mathbb{R}$

$$\Psi_I(x) = A_I \exp(k_I'' x) \qquad \text{(hier ist } x < 0\text{)}$$

$$\Psi_{III}(x) = A_{III} \exp\left(-k_{III}''x\right) \qquad \text{(hier ist } x > 0\text{)}$$

▶ Überlagerung links- und rechtslaufender Welle in II

$$\Psi_{II}(x) = A_{II} \exp(jk_{II}x) + B_{II} \exp(-jk_{II}x)$$

▶ analog zu den vorher behandelten Fällen gilt hierbei

$$k_{II}^2=2mW/\hbar^2 \qquad \qquad {\rm im~Bereich~II}$$

$$k_{I}''^2=k_{III}''^2=-2m\left(V_0-W\right)/\hbar^2 \qquad \qquad {\rm in~I~und~III}$$

▶ und durch Ausnutzen der Symmetrie der Geometrie

$$k_{I}'' = k_{III}''$$

www.uni-due.de/bhe

Festkörperelektronik - N. Weimann © 2025

www.uni-due.de/bhe/

Lösungsweg für endlichen Potentialtopf

- Ansätze und Randbedingungen Stetigkeit und Differenzierbarkeit an den Grenzflächen zwischen den Regionen
- ► Schrödingergleichung (Dgl.) →lineares Gleichungssystem
- ► für "echte" Probleme mit 3D-Potentialverlauf kann dies numerisch gelöst werden
- im einfachen Fall mit $V_0 = const.$ außerhalb des 1D-Quantentopfs kann weiter analytisch gerechnet werden . . .

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

13

Lösung des Gleichungssystems (gerade Wellenfunktion)

transzendentes Gleichungssystem

$$k_{II,g} \cdot \tan\left(k_{II,g} \cdot \frac{a}{2}\right) = k_I''$$

$$k_I''^2 + k_{II,g}^2 = \frac{2mV_0}{\hbar^2} \equiv C_0$$

- ▶ Lösungsmenge gegeben durch Werte für $k_{II,g}$ und k_I'' , die beide Gleichungen erfüllen \rightarrow graphische Lösung
- ▶ Parameter C_0 entspricht der Tiefe des Potentialtopfs, d.h. dem Potential V_0 , und ist neben der Geometrie a/2 vorgegeben

Ergebnisse der Randbedingungen

► Ansätze in den Bereichen

$$\Psi_{i}(x) = A_{i} \exp(-|k_{i}|''x)$$
 $i = \{I, III\}$
 $\Psi_{II}(x) = A_{II} \exp(jk_{II}x) + B_{II} \exp(-jk_{II}x)$

lacktriangle man findet für symmetrische (gerade) Lösungen $\Psi \sim \cos$

$$k_{II,g} \cdot \tan\left(k_{II,g} \cdot \frac{a}{2}\right) = k_I''$$

ightharpoonup es gilt für $k_I^{\prime\prime}$, der Eindringtiefe in die Barriere, auch

$$k_{I}'' = \sqrt{\frac{2m(V_0 - W)}{\hbar^2}} = \sqrt{\frac{2mV_0}{\hbar^2} - k_{II,g}^2}$$

wobei die kinetische Energie W mit dem Impuls im Potentialtopf $\hbar k_{II,q}$ ausgedrückt wird

www.uni-due.de/bh

Festkörperelektronik – N. Weimann © 2025

graphische Lösung

v.uni-due.de/bhe/ Festkörperelektronik – N. Weimann ©

www.uni-due.de/b

graphische Lösung gerade Wellenfunktion

▶ für tieferen Potentialtopf mehr als eine Lösung!

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

17

gerade Wellenfunktionen im endlichen Potentialtopf

www.uni-due.de/bhe/

estkörperelektronik – N. Weimann © 202

Lösung des Gleichungssystems (ungerade Wellenfunktion)

transzendentes Gleichungssystem

$$-k_{II,u} \cdot \cot\left(k_{II,u} \cdot \frac{a}{2}\right) = k_I''$$

$$k_I''^2 + k_{II,u}^2 = \frac{2mV_0}{\hbar^2} \equiv C_0$$

- lacktriangle Lösungsmenge gegeben durch Werte für $k_{II,g}$ und k_I'' , die beide Gleichungen erfüllen ightarrowgraphische Lösung
- ▶ Parameter C_0 entspricht der Tiefe des Potentialtopfs, d.h. dem Potential V_0 , und ist neben der Geometrie a/2 vorgegeben

graphische Lösung – ungerade

lacktriangleright nur für eine Mindesttiefe $V_{0,min}>rac{\hbar^2\pi^2}{2ma^2}$ gibt es eine ungerade Lösung!

www.uni-due.de/bhe/

Fazit: Zustände im Potentialtopf

- ▶ graphische Lösung
- ▶ Kreisbögen schneiden periodische tan und cot-Funktionen
- für ein gegebenes Potential V_0 sind nur endlich viele diskrete Wellenfunktionen Ψ_n mit zugehörigen Energiewerten W_n erlaubt
- \blacktriangleright der Grundzustand hat $W_1>0$ und ist gerade, dieser existiert für beliebig flache Potentialtöpfe
- ► für die höheren gebundene Zustände wechseln sich ungerade und gerade Symmetrie ab
- lacktriangle nur die Zustände sind gebunden, für die $W < V_0$ gilt
- ightharpoonup was passiert für $W>V_0$?

www.uni-due.de/bhe/ Festkörperelektronik – N. Weimann © 2025

Kontinuumslösungen für den endlichen Potentialtopf mit $W > V_0$

- ▶ Welle kommt von links
- klassisch: Teilchen fliegt über den Potentialtopf und merkt nichts
- Quantenmechanik?

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Kontinuumslösungen für den endlichen Potentialtopf mit $W \gg V_0$

▶ höhere kinetische Energie über dem Topf →dort kürzere Wellenlänge

Festkörperelektronik - N. Weimann © 2025

Kontinuumslösungen für den endlichen Potentialtopf mit $W \gtrsim V_0$

- ▶ Reflektion an Diskontinuitäten führt zu stehender Welle
- ightharpoonup reduzierte Amplitude aufgrund von T < 1
- ▶ bei erfüllter Resonanzbedingung im Topf →höhere Transmission

Kontinuumslösungen für den endlichen Potentialtopf mit $W \gtrsim V_0$

$$T(W > V_0) = \left(1 + \frac{\sin^2{(a \cdot k_{II})}}{4\frac{W}{V_0} \left(\frac{W}{V_0} + 1\right)}\right)^{-1} \text{mit } W = \frac{\hbar^2 k_{II}^2}{2m}$$

Festkörperelektronik - N. Weimann © 2025

Wasserstoffatom

- ► Ausnutzung der radialen Symmetrie: H-Atom ist physikalische Anwendung des 1D-Quantentopfs
- ightharpoonup Coulomb-Potential hängt nur von |r| ab:

$$V(r) = \frac{Q_1 Q_2}{4\pi\epsilon_0 \epsilon_r r}$$

lacktriangle mit den Ladungen $Q_{1,2}$ von Kern und Elektron, $\epsilon_r=1$

$$V(r) = -\frac{q^2}{4\pi\epsilon_0} \cdot \frac{1}{r}$$

Kraft aus Orts-Ableitung des Potentials

$$F(r) = -\frac{V}{r} = -\frac{q^2}{4\pi\epsilon_0} \cdot \frac{1}{r^2}$$

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Wasserstoffatom

schreibe die Schrödingergleichung in Kugelkoordinaten

$$x = r \sin(\theta) \cos(\varphi)$$

$$y = r\sin(\theta)\sin(\varphi)$$

$$z = r \cos(\varphi)$$

 transformiere den Laplace-Operator (durch Anwendung der Kettenregel)

$$\begin{split} \Delta &= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \\ &= \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left[\cot \theta \frac{\partial}{\partial \theta} + \frac{\partial^2}{\partial \theta^2} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right] \end{split}$$

/www.uni-due.de/bhe

estkörperelektronik – N. Weimann © 2025

Wasserstoffatom

Wasserstoffatom

▶ Ergebnis liefert das *Eigenwertspektrum* des Wasserstoffs

$$W_n = -rac{q^2}{8\pi\epsilon_0 r_0} \cdot rac{1}{n^2} \quad {
m mit} \ n = \{1, 2, 3, \ldots\}$$

darin steckt der Bohr'sche Atomradius

$$r_0 = \frac{4\pi\epsilon_0\hbar^2}{mq^2} = 5.29 \cdot 10^{-9} \, \mathrm{cm}$$

- ightharpoonup wir sehen wieder diskrete Energiewerte, diese rücken näher zusammen mit $W_n
 ightarrow 0$
- $ightharpoonup W_n$ beschreibt eine Bindungsenergie, ist daher negativ
- diese muss aufgewendet werden, um das Elektron aus dem Atom zu befreien

$$W_{ion} = |W_{\infty} - W_1| = \frac{q^2}{8\pi\epsilon_0 r_0} = 13.6 \, \text{eV}$$

www.uni-due.de/bhe/

Bohr'sches Atommodell

- ► Bohr'sches Modell beschreibt Elektronen auf Bahnen, die um den Kern kreisen
- ▶ neben der Energie ist auch der Drehimpuls quantisiert, d.h. kann nur feste Werte annehmen \rightarrow Quantenzahl l
- lacktriangle der Drehimpuls entspricht einer bewegten Ladung und hat damit ein magnetisches Moment, das sich im Magnetfeld nur in festen Schritten ausrichten kann ightarrowQuantenzahl m
- ► Elektronen drehen sich um ihre eigene Achse, dieser sogenannte Spin s beschreibt einen Kreisstrom, ist im Magnetfeld nachweisbar
- lackbox Satz von Quantenzahlen $\{n,l,m,s\}$ kann das Periodensystem beschreiben

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

33

Bohr'sches Atommodell

- lacktriangle vollständiger Satz von Quantenzahlen $\{n,l,m,s\}$ kann das Periodensystem beschreiben
- ightharpoonup n, l, m können nur ganzzahlige Werte annehmen
 - ▶ Energie-Hauptquantenzahl $n = \{1, 2, 3...\}$
 - ▶ Drehimpuls-Nebenquantenzahl $l \le n-1$
 - ▶ Drehmipulsausrichtungs-Nebenquantenzahl m, hier gilt $-l \le m \le l$
- ▶ Spinquantenzahl $s = \left\{-\frac{1}{2}, +\frac{1}{2}\right\}$

www.uni-due.de/bhe/

Festkörperelektronik - N. Weimann © 2025

Bohr'sches Atommodell

▶ höchste Exzentrizität, z.B. l=0 bei n=3, ist Zustand niedrigster Energie in Schale n=3

Pauli-Prinzip

- ► Elektronen eines Atoms unterscheiden sich in mindestens einer Quantenzahl
- ➤ Zustände werden von unten, d.h. von der niedrigsten Energie her, aufgefüllt
- lacktriangle es sind jeweils 2 Elektronen in einem Zustand, der von $\{n,l,m\}$ bestimmt wird

w.uni-due.de/bhe/ Festkörperelektronik – N. Weimann © 2025

www.uni-due.de/bhe/

Orientierungsquantenzahl

lacktriangle im Magnetfeld führt die Ausrichtung m zu einer Aufspaltung der Energieniveaus

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Periodensystem

n	1	m	s	Schale	max. Anz. der Elek- tronen in der Schale	Element (Kernladung)	Besetzung der Schalen	Anz. der ver- schiedenen Elektronen in der jeweiligen Schale
1	0	0	± 1/2	К	2 (1s)	1 ^H 2 ^{He}		1x1s 2x1s
2	0	0	± 1/2	L	2 (2s)	3 ^{Li}	{ ===	1x2s 2x1s
	1	-1	± 1/2		6 (2p)	4 ^{Be}	{ ====	2x2s 2x1s
		0	± 1/2			5 ⁸	{====	2x2s 2x1s + 1x2p
		+1	± 1/2			6°	{=====	2x2s 2x1s + 2x2p
						7 ^N	{	:
						80	{	
						9 ^F	{	2v2e
					∑ 8	10 ^{Ne}	{ 	2x2s 2x1s + 6x2p
3	0	0	± 1/2	М	2 (3s)	11No	{=	1x3s 2x2s + 6x2p 2x1s
	1	-1	± 1/2		6 (3p)	12 ^{Mg}	{======	:
		0	± ½			13 ^{AI}	{	:
		+1	± 1/2			14 ^{Si}	{=====	2x3s + 2x3p 2x2s + 6x2p 2x1s
					10 (3d)	15 ^p	{	
						16 ^s	{ ====	
						17 ^{ci}	{=======	
	2	-2	± 1/2		<u>Σ</u> 18	18 ^{Ar}	{ ====	2x3s + 6x3p 2x2s + 6x2p 2x1s

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Prinzip der Spektroskopie

- ► Energie des Lichtquants entspricht der Übergangsenergie →Resonanz →Energieübertrag
- ► Auswahlregeln müssen beachtet werden (Drehimpuls ist erhalten!)

www.uni-due.de/bhe/

Zusammenfassung 4. Vorlesung

- endlicher Potentialtopf
 - ▶ gerade und ungerade Lösungen
 - ▶ grafische Methode zum Auffinden der erlaubten Energiewerte
 - gebundene Zustände
 - resonantes Tunneln Kontinuumszustände
- ► Atommodell und Periodensystem
 - ▶ Wasserstoffatom, Bohr'sches Modell aus radialsymmetrischer Sgl.
 - Quantenzahlen
 - ► Pauli-Prinzip
 - ► Messung der Übergänge mit Spektroskopie

www.uni-due.de/bhe/

Festkörperelektronik – N. Weimann © 2025

Ausblick

- ▶ auf 4. Übung: Rechenbeispiele für Potentialstufe
- ▶ nächste Vorlesung: Erweiterung des Potentialtopf-Modells auf Kristalle, d.h. periodische Strukturen

Danke für Ihre Teilnahme!

www.uni-due.de/bhe/ Festkörperelektronik - N. Weimann © 2025 43 www.uni-due.de/bhe/ Festkörperelektronik - N. Weimann © 2025